Homework 3, due 2/20
Only your four best solutions will count towards your grade.

1. Let $f: U \rightarrow \mathbf{C}^{n}$ be a smooth map defined on an open set $U \subset \mathbf{C}^{m}$. Denote by $d f: T_{\mathbf{C}} U \rightarrow T_{\mathbf{C}} \mathbf{C}^{n}$ the differential of f as a map on the complexified tangent bundles. Show that f is holomorphic if and only if $d f\left(T^{1,0} U\right) \subset T^{1,0} \mathbf{C}^{n}$.
2. (a) Show that if $f: U \rightarrow \mathbf{C}^{n}$ is a holomorphic map, where $U \subset \mathbf{C}^{m}$, then for all p, q we have $f^{*}\left(\mathcal{A}^{p, q}\left(\mathbf{C}^{n}\right)\right) \subset \mathcal{A}^{p, q}(U)$, i.e. pulling back by holomorphic maps preserves the types of forms.
(b) Show that for any differential form $\overline{\partial \alpha}=\bar{\partial} \bar{\alpha}$. Use this to state a version of the Poincaré Lemma for the ∂ operator.
3. Let $\alpha \in \mathcal{A}^{p, q}(B)$ for a polydisk $B \subset \mathbf{C}^{n}$. Suppose that $\alpha=d \beta$ for a complex $(p+q-1)$-form β. Show that there exists $\gamma \in \mathcal{A}^{p-1, q-1}(B)$ such that $\alpha=\partial \bar{\partial} \gamma$.
4. Prove the inhomogeneous Cauchy integral formula: suppose that $f: U \rightarrow$ \mathbf{C} is a smooth function, where $U \subset \mathbf{C}$ is open. Let B be a disk, with $\bar{B} \subset U$. Show that for any $z \in B$ we have

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial B} \frac{f(w)}{w-z} d w+\frac{1}{2 \pi i} \int_{B} \frac{\partial f}{\partial \bar{w}} \frac{d w \wedge d \bar{w}}{w-z} .
$$

5. Define the ($n, n-1$)-form η_{0} on \mathbf{C}^{n} by
$\eta_{0}=(-1)^{n(n-1) / 2} \sum_{k=1}^{n}(-1)^{k-1} \bar{z}_{k} d z_{1} \wedge \ldots \wedge d z_{n} \wedge d \bar{z}_{1} \wedge \ldots \wedge \widehat{d \bar{z}_{k}} \wedge \ldots \wedge d \bar{z}_{n}$,
where in the wedge product the $d \bar{z}_{k}$ term is omitted. Show that $d \eta_{0}=$ $n(2 i)^{n} d V$, where $d V$ denotes the Euclidean volume form

$$
d V=d x_{1} \wedge d y_{1} \wedge \ldots \wedge d x_{n} \wedge d y_{n}
$$

6. Let f be a holomorphic function on a domain containing the closure of the unit ball $D=\{z:\|z\|<1\} \subset \mathbf{C}^{n}$. Let η_{0} be as in the previous question.
(a) Show that the form $\omega=f(z)\|z\|^{-2 n} \eta_{0}$ satisfies $d \omega=0$ on $D \backslash\{0\}$.
(b) Prove the Bochner-Martinelli formula

$$
f(0)=\frac{(n-1)!}{(2 \pi i)^{n}} \int_{\partial D} f(z) \frac{\eta_{0}}{\|z\|^{2 n}}
$$

